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ABSTRACT 

This report provides documentation of an effort to predict values based on 
available sample site information for variables in lithology, hydraulic 
characteristics, and aquifer permeability data sets for the vadose zone and the 
Snake fiver Plain Aquifer in the Radioactive Waste Management Complex 
region of the Idaho National Engineering and Environmental Laboratory. This 
work was performed in support of the Operable Unit 7-13/14 remedial 
investigation and feasibility study. 
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Geostatistic Modeling of Subsurface Characteristics 
in the Radioactive Waste 

Management Complex Region, Operable Unit 7-1 3/14 

1. INTRODUCTION 

The Federal Facilities Agreement and Consent Order for the Idaho National Engineering 
Laboratory (DOE-ID 199 1) subdivides the Idaho National Engineering and Environmental Laboratory 
(INEEL) into 10 waste area groups (WAGS) for remedial management. Waste area group is also the 
designation recognized under the Comprehensive Environmental Response, Compensation and Liability 
Act (CERCLA) (42 USC 9 9601 et seq.). The Radioactive Waste Management Complex (RWMC) at the 
INEEL (see Figure 1) was designated as WAG 7. This geostatistic modeling study was performed for the 
Subsurface Disposal Area (SDA), shown in Figure 2, which is part of the RWMC. 

Hydrologic models are important tools for predicting fate and transport of groundwater and the 
constituents carried therein. Understanding flow mechanisms is especially important for areas like the 
SDA where hazardous constituents may be in the groundwater. To apply deterministic hydrologic models, 
many characteristics need to be known at a small scale over the entire area of interest. Characteristics for 
the area of concern include the following: 

Depth of subsurface soil and basalt layers (lithology) 

0 Porosity and permeability of the interbed (hydraulic characteristics) 

0 Permeability of the Snake fiver Plain Aquifer 

These variables are measured at only a sample of sites. Predictions must be made because 
hydrologic modelers seek to determine values over the whole area of interest. 

1.1 Purpose 

This report provides documentation of an effort to predict values for variables in lithology, 
hydraulic characteristics, and aquifer permeability data sets (see Appendix A) for the area in and around 
the SDA, based on available sample site information. This work supports the CERCLA-driven Operable 
Unit 7- 13/14 remedial investigation and feasibility study.” 

1.2 Scope of Work 

The geologic and hydrologic characteristics data are used to determine appropriate spatial models 
and calculate predictions. This process involves a close exploration of the data, an investigation of 
anisotropy (directionally dependent spatial correlation), consideration of extreme values, examination of 
relationship to location variables, calculation of predictions, determination of the fit of the model, and 

a. Holdren, K. Jean, Bruce H. Becker, Nancy L. Hampton, L. Don Koeppen, Swen 0. Magnuson, T. J. Meyer, Gail L. Olson, and 
A. Jeffrey Sondrup, 2002, “Waste Area Group 7, Operable Unit 7-1 3/14, Comprehensive Remedial Investigatiofleasibility 
Study (Draft),’’ DOEAD-10834, Rev. B, U.S. Department of Energy Idaho Operations Office, Idaho Falls, Idaho, March 2002. 

1 



0 5 10 15 20 Niries 

o 5 l a  15 20 25 30 3 5 ~ ~  

2 



3 



examination of the model variability. These steps are performed for each of the three data sets 
(i.e., lithology, hydraulic characteristics, and aquifer permeability) along with specific analyses pertaining 
to each data set. 

1.3 Spatial Models 

Three spatial models are used to predict values over the area: (1) inverse distance weighting, 
(2) simple kriging, and ( 3 )  universal kriging. The predictions are made for four domains or grid 
refinements. These grid refinements area rectangular and of decreasing size and increasing intensity (see 
Figure 3 ) .  This follows roughly the pattern of sample intensity as well as data needs for hydrologic 
modeling. Benefits of the methods are described and resulting predictions are presented in the following 
sections. 

Subsurface 
Disposal 

/Area 

257500 261 750 266000 270250 274500 
Easting ( i t )  

Figure 3 .  Prediction domains over the Subsurface Disposal Area and surrounding territory. 

1.4 Background 

The geologic characteristics of the area are described in Development, Calibration, and Predictive 
Results of a Simulator for Subsurface Pathway Fate and Transport of Contaminants in the SDA 
(Magnuson and Sondrup 1998). The data in Table 1 are based on Stratigraphic Data for Wells At and 
Near the Idaho National Engineering Laboratory, Idaho (Anderson et al. 1996) with interpretations for 
basalt and sediment interfaces derived from data on wells drilled in 1999. The hydraulic characteristics 
were compiled from four sources (Barraclough et al. 1976; McElroy and Hubbell 1990; correspondence 
from Southwest Research Institute;b and USGS 2000, p. 30). The aquifer permeability data were 
combined from Aquifer Testing of Wells MlS, M3S, M4D, M6S, M7S, andA4l OS at the Radioactive Waste 
Management Complex (Wylie and Hubbell 1994) and Pumping Test ofPit 9 Production Wells 
(Wylie 1996). 

b. m k e  Dammann, Southwest Research Institute, Letter to Corey Frandsen, Idaho National Engineering and Environmental 
Laboratory, November 2,2000, “Idaho National Engineering and Environmental Laboratory Scope of Work,” ER-SOW-371 



Table 1. Correlation among variables from the lithology data set.” 
C-D B-C A-B 

Interbed Interbed Interbed 
Layer Soil C Basalt Soil B Basalt Soil A Basalt 

Surface elevation -0.06 -0.17 0.30 0.03 -0.26 0.76 

Suficial soil -0.16 0.00 -0.17 -0.12 -0.20 -0.26 

A basalt -0.04 -0.36 0.38 -0.14 -0.46 NA 

A-B interbed soil 0.02 0.38 -0.13 -0.03 NA NA 

B basalt 0.40 0.15 -0.22 NA NA NA 

B-C interbed soil 0.02 -0.42 NA NA NA NA 

C basalt 0.03 NA NA NA NA NA 
a. Values in bold font are statistically ( a  = 0.05) different from zero. 
NA = not applicable 
Note: Only interbed soil-layer information is useful for estimating truncated values. Other values are included for completeness. 
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2. DATA 

Three separate data sets were explored and used to calibrate spatial models: (1) lithology, 
(2) hydraulic characteristics, and ( 3 )  aquifer permeability. Sample site locations were measured in state 
plane coordinates in the North American Datum of 1927 (i.e., NAD 27), which is historically used on the 
INEEL. The following sections contain descriptions of the data sets, an explanation of the models, and 
some general steps that were involved in the modeling process. 

2.1 Lithology Data Set 

The lithology data set (see Appendix A, Table A-1) consisted of 118 sample sites where bore holes 
were drilled and elevation measurements taken at the bottom of the basalt layers and thickness of the 
interbed soil layers. Eighteen layers were measured, but only eight were used in the analyses documented 
in this report. These layers are listed below: 

Surface elevation 

0 Surficial soil thickness 

Elevation of the bottom of the A basalt layer 

0 Thickness of the A-B interbed soil layer 

Elevation of the bottom of the B basalt layer 

0 Thickness of the B-C interbed soil layer 

Elevation of the C basalt layer 

0 Thickness of the C-D interbed soil layer 

Because the amount of unrecorded data increased as the depth increased, the distance between sites 
in the lower layers (i.e., D basalt layer and D-E interbed soil layer) exceeded the spatial continuity of the 
data. The D basalt layer and D-E interbed soil layer, as well as layers below, had too few sampled sites to 
consider modeling. 

2.1.1 Irregularities in the Lithology Data 

The lithology data had three irregularities: (1) truncated values, (2) gaps in soil or basalt layers, and 
( 3 )  variables measured on different scales. These were dealt with in a variety of ways. 

2.7.7.7 
through a soil layer. These were dealt with by either using the reported values or an estimate. The value 
could be estimated from regression on upper layer elevation and thickness values because some of these 
variables were moderately correlated (see Table 1). 

Truncated Values. First, truncated values resulted when boreholes were drilled into but not 

2.7.7.2 
produced from merging soil layers (i.e., basalt gap) or merging basalt layers (i.e., interbed gap) (see 
Figure 4). These gap situations were dealt with using one of three methods. In Method 1 (the default 
method used by Magnuson and Sondrup [ 1998]), the two types of gaps (i.e., interbed and basalt) were 

Gaps in Soil or Basalt Layers. The second irregularity in the data was gaps in the layers 
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Figure 4. Examples of a basalt gap between the subsurface sod layer and the A-3 interbed soil layer and 
an interbed gap between the B and C basalt layers. 

treated the same. The lower soil layer of a basalt gap was assigned a thickness of zero and the upper soil 
layer was assigned the whole thickness. When two basalt layers mergsd and an interbed gap existed, the 
data already reflected the correct basalt layer bottom elevations. Therefore, no alteration resulted and the 
soil layer had a thickness of zero. Methods 2 and 3 treated the two gap types differently. Where basalt 
layers merged (Leo, an interbed gap), the lower soil layer was assigned the correct thickness of zero for 
both approaches. For Method 2 (Le., in basalt gap areas), the two soil layers were assigned the same 
thickness (Le., that of the merged depth). For Method 3, each soil layer was assigned one-half of the 
merged depth thickness. 

2. f, 1.3 Variables Measured on Di#emnt Sca/es. The third irregularity was that the data were 
alternately reported in thickness and elevation. These variables had very different value ranges and also 
made every second layer independent of the upper layers. Three data sets were constructed to determine 
the effect of this irregularity. The first was the reported data in alternating thickness and elevation. All 
values were converted into thickness in the second data set and all values were converted into elevations 
in the third data set. 

2.1.2 Predicting Elevation of Subsurface Layers and Thlckness 

Regardless of what data set was used for analysis, in the final presentation all data were reported as 
elevation at the bottom of the layer. Therefore, the surficial soil elevation was also the elevation at the top 
of the A basalt layer. With two alternatives for truncated values, three alternatives for gaps, and three 
alternatives for data units, 18 data setups were considered and compared in predicting elevation of the 
subsurface layers. 

The 18 data setups were compared by calculating the differences between predictions at all grid 
points. The mean difference between predictions from the data setups was calculated. Mean absolute 
differences also were computed to determine whether the differences were always one-way or whether 
sometimes one method gave lower and sometimes higher predictions than another method, These gave an 
overall comparison among setups. If differences were small, then which setup was used did not matter 
and the raw data were preferred for simplicity. In some instances, the differences were mapped to see 
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where large differences occurred and if they made sense. For instance, large differences were expected 
between the two methods for dealing with sites that include truncated values. Geologists explored setups 
that produced different predictions to determine which representation was most likely to reflect reality. 

The lithology layers did not overlap in reality, but predicted layers did. In predicting values for the 
lithology layers, a separation constraint was imposed to ensure that the layers did not overlap, but did 
account for them possibly coinciding. The first step was to change negative thickness predictions to zero. 
After the predictions were changed to elevations, they were checked for overlap. If layers overlapped, the 
lower layer value was set equal to the upper layer. 

2.2 Hydraulic Characteristics Data Set 

The hydraulic characteristic data set (see Appendix A, Table A-2) consisted of interbed 
permeability or porosity for a total of 112 samples. These samples represented 32 site locations at 1 to 19 
different depths. The data covered the B-C and C-D soil interbeds. Data for the B-C interbed were 
obtained from 17 sites and data for the C-D interbed from 24 sites (see Appendix A, Table A-3). 
Permeability was measured in centimeters per second and porosity was measured in percent. The porosity 
data from various depths at each site location were combined by taking the mean. The permeability data 
were transformed to millidarcies before taking the harmonic mean over depth for each site location. 
Harmonic averaging was used because it is most appropriate for flow perpendicular to layering (Freeze 
and Cherry 1979, pp. 33 to 34). Flow perpendicular to layering is thought to be most appropriate in the 
case of the sedimentary interbeds that are horizontally deposited and primarily have vertical water 
movement through them. The harmonic mean was then natural log transformed to attain symmetry. 

2.3 Aquifer Permeability Data Set 

The aquifer permeability data set (see Appendix A, Table A-4) consisted of 2 1 sample sites with 
transmissivity measured in cubed feet per day per foot. These data were natural log transformed to attain 
symmetry. Four values outside the base grid were influential in the predictions. These sites were removed 
because they were farther away from base grid sites than were other sites within the base grid. 
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3. MODELS 

The three different modeling techniques of inverse distance weighting, simple kriging, and 
universal kriging were used. The final technique was chosen depending on it 3 ability to accurately achieve 
the goal of producing maps that provided a realistic picture over the area of i iterest. Kriging takes into 
account the spatial relationship of a series of points, permitting interpolation within a three-dimensional 
matrix of points and estimation of additional data points. While the kriging methods had the added benefit 
of a derived measure of precision as well as some information about spatial continuity, they also had the 
added burden of modeling the variogram, which required adequate data at appropriate distances. 

3.1 Inverse Distance Weighting 

One modeling technique applied to data was inverse distance weighting. This technique made no 
assumptions but could provide an ad hoc measure of precision (Reich and Davis 2000). The prediction at 
a grid point ( 2, ) was calculated by weighting each measured value (3) by th'3 inverse of the distance 
between the prediction site and the sample site (d,,,), as follows: 

where 

.. = predicted value 
- i  

xj = measuredvalue 

d i j  = distance between the prediction site and sample site. 

The variance of the prediction ( $ ) was given by 

Inverse distance weighting was the selected method for the hydraulic characteristic interbed 
permeability for the B-C and C-D soil interbeds. This method was chosen because of inadequate data for 
proper variogram modeling. This method was implemented using 3DField software (Galouchko 2002). 

3.2 Simple Kriging 

The second modeling technique applied to data was simple kriging, which made predictions based 
on a weighted mean of all sample values. The two assumptions made in kriging were (1)  of a locally 
common expected value (i.e.. stationarity) and (2) that spatial correlation was independent of direction 
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(i.e., isotropy). Stationarity was assumed, and in simple kriging the mean hnction was assumed known. 
Isotropy of all variables was verified by comparing the variograms (i.e., values of distance and variance 
between pairs of points at each distance [see Appendix B, Figure B-11) of the raw data and of the 
residuals from a polynomial regression on related terms specified in Table 2. These variograms were 
compared for four directions corresponding to northeast-southwest, north-south, northwest-southeast, and 
east-west. The directional variogram was calculated using only pairs that were in the specified direction, 
plus or minus a tolerance angle. The data sets that displayed similar variograms for all directions were 
considered isotropic. The empirical variograms of the isotropic data then were modeled by specifying 
each of the following: 

0 Model: Gaussian or spherical 

0 Nugget: small scale variation 

Sill: asymptotic variance between independent pairs of sites 

0 Range: distance at which the sill is attained. 

Table 2. Summary of stationarity investigation showing significant (p < 0.1) regression (4) of variables on 
directions east and north. their sauares. and the interaction. 

Data Set Variable East North East2 North2 East xNorth 
Lithology Surface elevation .I 

Surficial soil thickness 
A basalt elevation 
A-B interbed soil 
thickness 
B basalt elevation 
B-C interbed soil 
thickness 
C basalt elevation .I 
C-D interbed soil .I 

lnterbed hydraulic B-C interbed porosity .I 
C-D interbed porosity .I 

thickness 

B-C interbed permeability 
C-D interbed permeability 

Aquifer permeability Transmissivity .I 

.I 

.I .I 

.I .I 

.I 

.I .I 

.I 

.I 

Kriging predictions were calculated to minimize the error variance, which was accomplished by 
weighting station values in accordance with the variogram model parameters. Those values closer to the 
prediction point received larger weight. Because values from sites close to the prediction sites were more 
highly correlated with the prediction, the variance was smaller when sites were close together. Simple 
kriging was used for the following lithology variables: 

0 Surficial soil thickness 
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A basalt elevation 

0 B-C interbed soil thickness. 

Simple kriging was performed in S+SPATIALSTATS (MathSoft 2000). 

3.3 Universal Kriging 

The third modeling technique applied to data was universal kriging, which incorporated the 
assumption that the data have an unknown mean hnction. The procedure was the same as simple kriging 
except that the mean hnction was estimated as a hnction of easting and northing in the process of 
calculating predictions. Terms possibly included were easting, northing, easting2, northing2, and 
easting x northing. Only terms that were significantly related to the response were included. Extra terms 
that were not usehl in prediction increased the kriging variance unduly. Estimates of percent of 
variability explained by the linear and polynomial trend were obtained while performing these regressions 
to determine which terms to include in the model. This assisted in the selection of terms and also 
determined the utility of universal kriging over simple kriging. A large part of the remaining variability 
(after the terms were included) was assumed to be explained by the spatial model. Universal kriging was 
applied to the remaining lithology variables as well as the interbed soil porosity and aquifer 
transmissivity. Universal kriging also was performed in S+SPATIALSTATS (i.e., Splus). 

3.4 Variograms 

Simple or universal kriging began by modeling the empirical variogram of the isotropic data 
Various parameters were specified to ensure robustness in the calculation of the variogram. The 
parameters are listed below: 

0 Number of distances 

0 Size and tolerance of the distance 

0 Maximum distance between pairs 

Estimation type (classical or robust [Cressie 19931) 

0 Minimum number of pairs used to estimate at each distance. 

After developing an appropriate empirical variogram, a model was fit. Manual model fitting of the 
variogram included the following steps: 

0 Trying more than one model 

0 Trying various values for sill, nugget, and range 

0 Analyzing variogram clouds 

Calculating cross-validation variograms 

0 Comparing kriging estimates from different variogram models. 

11 



Some of these data sets had few pairs of site locations within 305 m (1,000 ft), which made 
variogram modeling difficult. To determine the relationship between pairs of sites at close distances, a 
variogram cloud was considered. The variogram cloud portrayed all semivariances at all distances, not 
just an average (or median for robust calculation) for all pairs within a range of distances. This portrayal 
allowed a closer inspection of the relationship. Small-distance relationships could be discerned as well as 
the distribution of semivariances at all distances. The variogram cloud could be portrayed as a plot of all 
possible points. However, this plot became cluttered and difficult to interpret, especially in the presence 
of some extreme semivariances. The boxplots of values at many distances were more revealing because 
they displayed the median and quartiles of the semivariance distributions and downplayed the effect of 
the extreme values. In modeling the empirical variograms, the boxplots of variogram clouds also were 
considered (see Appendix B, Figure B-1). 

To investigate single outliers, variograms were calculated with a hold-one-out method and 
compared. Each variogram was calculated after deleting one site and was compared to the variogram from 
the h l l  data set. Variograms that differed from the rest indicated a problem with that site. 
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4. IMPLEMENTATION 

Spatial modeling proceeded in steps. First was exploratory data analysis. Second was variogram 
calculation and modeling. The first step involved determining the best empirical variogram for raw data 
and residuals, looking at directional variograms and a variogram cloud, and modeling the resulting 
isotropic data. The next step was to calculate the model predictions for the all techniques. The predictions 
were made for each of four grids, which are described below. For data that were lognormal, the 
predictions were back-transformed to their original scale (also described below). Finally, the models were 
compared with respect to predictions and their standard deviations. The effect of sample location is 
discussed below as well as methods to compare predictions. Variability was examined using contour plots 
of model standard deviations for kriging and inverse distance weighting. These maps provided an 
indication of confidence in the model predictions (i.e., the larger the standard deviation, the less 
confidence in the model predictions). The model predictions are always more precise around sample sites 
and in areas of dense sampling. Model predictions are less reliable in areas of sparse sampling and have 
larger model standard deviations. Model standard deviations also are interpreted relative to the prediction 
values because larger values generally have larger variances. 

4.1 Grids 

The predictions were made on four grid refinements (see Figure 3). The four grids were devised to 
cover a large region with a coarse grid and successively smaller areas with finer grids. The results then 
would be combined so that those smaller-area grid (i.e., interior) predictions had precedence over 
larger-area grid predictions, thus creating a map of the whole area with different grid intensities in 
different areas. 

4.2 Lognormal Data 

Some of the data were lognormally distributed and were natural log transformed before variogram 
modeling and kriging. The distribution of the data did not impact inverse distance weighting; therefore, 
raw data were used there. To obtain estimates of the original data after kriging, the log-transformed data 
required a bias correction to the simple exponential back-transformation. This bias correction was plus 
one-half of the kriging variance. The back-transformation often resulted in predicted values that were at 
least an order of magnitude larger than the largest measured value. This effect was exacerbated by sparse 
data because the kriging variance was larger for data that were spread farther apart. Alternative 
approaches for lognormal data were attempted. The alternatives were to use (1) a different transformation 
(e.g., normal score), (2) indicator kriging, (3) simulation, or (4) another method such as inverse distance 
weighting. In practice, the normal score transformation produced nugget-only variograms. Indicator 
kriging required specific limits to compress the data into 0: 1 data. Simulation was a viable alternative (as 
discussed in Section 6) and inverse distance weighting, which was straightforward and applicable, was 
used here. 

4.3 Effects of Sample Location 

The sample sites were not on a regular grid, nor were they evenly dispersed over the area for any of 
the data sets. The area in the SDA had many sample sites, with fewer and fewer as the distance away from 
the SDA increased. This distribution had an impact on all types of predictions. For kriging models, the 
distance between pairs of sites influenced the empirical variogram and hence the variogram model, which 
determined the kriging weights. The small distance range of the variogram model greatly affected the 
kriging predictions and that lack of data led to uncertain predictions. This uncertainty was only partially 
reflected in the kriging variance. The kriging variance was larger when data points were farther apart, but 
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this still understated the uncertainty associated with unsupported small-scale variogram modeling. In 
some instances, depending on how sparse the data were, kriging models were not appropriate. If the 
variogram could not be modeled sufficiently, then the kriging variance (a major advantage of kriging) was 
suspect, and simpler approaches such as inverse distance weighting were preferred. The inverse distance 
weighting predictions also were somewhat impacted because the closest sites, even if they were far away, 
still had a large influence on the prediction. 

4.4 Model Fit Assessment 

Cross-validation was performed for the variogram modeling and the lu iging predictions to assess 
the fit of the models. Each site had an associated hold-one-out error, which was the prediction made for 
that site without that site included in the model minus the true value for that site. Large hold-one-out 
errors signified that a site’s value had a large impact on the predicted surface In these data, many 
outlying sites had large hold-one-out errors. This was the result of the lack of’nearby sites. This procedure 
was automated for simple and universal kriging in GSLIB: Geostatistical SoJl’ware Library and User’s 
Guide (Deutsch and Journel2000), but not for inverse distance weighting where the cross validation was 
performed by repeated analyses. The cross-validation results were summarized as follows: 

0 Meanerror 

Median of the errors as a percent of the truth 

0 Mean square error (MSE) 

Square root of the reduced MSE (RedRootMSE) where the reduced MSE was the mean of the 
squared error divided by the kriging variance. 

In a model that fits the data well, the mean error was small as was the 8a-ror as percent of truth and 
the MSE. The square root of the reduced MSE was near unity in a model that fit well, and within the 
limits 1 k 2@ (Magnuson and Sondrup 1998). 
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5. RESULTS 

The results for each data set are presented separately. Data transformation results are presented 
first, followed by results of the variogram modeling. A comparison of predictions from the three models 
is presented next. The predictions and standard errors are presented as maps in Appendix B, one for each 
of the four grids. 

5.1 Lithology Data Set 

Full quadratic regressions on easting and northing were run for each variable to determine the need 
for estimating an unknown mean hnction (see Table 2). Almost all variables were related to at least one 
of the terms, and many were related to the interaction or quadratic terms as well. Only significant terms 
were used in exploring isotropy and in universal kriging. 

All variables were found to be isotropic after considering directional variograms at four directions. 
The raw data, as well as residuals of the regressions on latitude and longitude, were considered for 
isotropy. Figure 5 shows all directional variograms for the C basalt layer elevation for the raw data and 
the residuals from regression. This example represents the situation for other variables in that there was 
little difference in the shape, nugget, sill, or range for any direction or for the residuals versus the raw 
data. 

About half of the 39 variables required to produce the 18 data setups were fit with a Gaussian 
model and half with a spherical model. The spatial ranges of the variables were between 107 to 914 m 
(350 and 3,000 ft) with most of the small ranges being for interbed soil thickness layers. The variograms 
were restricted to pairs of sites within 914 m (3,000 ft) because pairs of sites beyond that range were rare. 
The final data set (discussed next) had variograms (see Table 3 and Appendix B, Figure B-1) that were 
somewhat consistent. The elevation variables had fairly large ranges (396 to 883 m [1,300 to 2,900 ft]) 
and the thickness variables had smaller ranges (183 to 259 m [600 to 850 ft]) except the B-C interbed soil 
thickness, which had a range of 914 m (3,000 ft). 

The data, as recorded with gaps, truncated values, and a mix of thickness and elevation, produced 
acceptable results with the least amount of data manipulation (see Table 4). The three methods for 
calculating elevation were similar; therefore, it did not matter whether variables were transformed to 
elevation, thickness, or left as a combination. However, the three methods used to deal with gaps between 
layers yielded different results. Although the methods that differentiated soil merges and basalt merges 
were more appealing theoretically, the differences among method results were quite small. The 
differences were consistent between Methods 2 and 3 (which dealt with gaps and pinches differently than 
the default method [Method l]), and Method 3 (which used half the thickness for each layer) predicted 
higher elevations, as expected. The differences between Methods 1 and 3 were inconsistent across layers, 
and the only sizable difference between Methods 1 and 2 was the A-B interbed soil elevation. These large 
differences occurred, as expected, at areas with gaps in the basalt layer (see Figure 6). Though the 
differences were large (up to 4.6 m [15 ft] in some areas), the predictions were not what the hydrologists 
expected to see. Because the hydrologists were accustomed to data and maps produced from the default 
method, and they were the interpreters, the default method was used in the final data set. Some 
differences also existed between the methods to deal with truncated values. In the C-D interbed soil 
layer thickness (where most of the truncated data occurred), the estimated values produced a 
smoother predictive surface. Because the hydrologists preferred the rougher surfaces, truncated values 
were used. In the A-B interbed soil layer thickness, the one estimated value actually produced a very large 
cross-validation prediction error. The prediction at this point was a lot larger than the truncated value and 
any other value for that layer, which was another reason to use the raw truncated data. 
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Figure 5 .  Directional variograms for the C basalt layer raw data (top) and residuals from regression on 
easting mad easting' (bottom). (Gamma is a special covariance and measurements are reported in feet.) 
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Figwe 6. Difference between prediction of bottom elevation of A-B interbed soil from Methods 1 and 2 
for dealing with gaps. The G indicates a site location with an A basalt laym gap, P indicates a pinch off of 
the A-3 interbed soil layer, and N indicates neither situation occurred there. 

Table 3. Interpolation method and variogram parameters (where appropriate) used to model basalt layer 
elevations, interbed soil thickness, soil permeability and porosity, and aquifer permeability. 

Variable NuMet Sill Range (fi) Interpolation Method 
Surface elevation Ofz 25 ft2 1,300 Universal kriging 

A basalt elevation 0 ftz 170 f? 1,800 Simple kriging 
A-B interbed soil l f ?  4f? 850 Universal kriging 
thickness 
B basalt elevation 31 ft2 

thiclmess 

C-D interbed soil 50 ft2 
thickness 
B-C interbed porosity 60%' 

C-D interm porosity 30%2 

Surficial soil thickness 5 ft2 aft2 600 Simple kriging 

B-C interbed soil 120 ft2 

C basalt elevation 45 f? 

B-C interbed 
permeability 
C-D interbed porosity 

5fP 
Of? 

2,900 

3,000 
Universal kriging 
Simple higing 

Of? 
40 ftz 

2,200 
700 

Universal kriging 
Universal Irriging 

0% 
0% 
- 

Universal kriging 
Universal kriging 
Inverse distance weighting 

Inverse distance weighting 
Transmissivity 0 (f?/&y)2 15 (fe/dayy 1,800 Universal higing 
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Table 4. Comparison of data evaluation techniques for characterizing lithologic layers (units in feet). 

Mean Difference Between Predictions for Different Data Methods (Mean Absolute Difference)a, 

Truncated 

Prediction Prediction of Prediction of Prediction Prediction Prediction Prediction 
of Truncated Mixed Elevation Mixed Elevation of Elevation of Method 1 of Method 1 of Method 2 
Value Minus and Thickness and Thickness Minus Minus Minus Minus 
Prediction of Minus Prediction Minus Prediction Prediction Prediction Prediction Prediction 

Values Data Units Gaps 

Layer Estimated Value of Elevation of Thickness of Thickness of Method 2 of Method 3 of Method 3 

Surface NA NA NA NA NA NA NA 
elevation 

Surficial NA 
soil elevation 

A basalt NA 
elevation 

O0 A-B interbed 0.27 
soil elevation (0.3 1) 

B basalt NA 
elevation 

B-C interbed 1.86 
soil elevation (1 36)  

C hasslt NA 
elevation 

C-D interbed 8.17 

- 

soil elevation (8.17) 

-0.11 
(1.37) 

0 0.1 1 0 -3.15 -3.15 
(1.37) (3.15) (3.15) 

-0.13 -1.02 -1.15 NA NA NA 
(0.18) (1.02) (1.15) 

(1.09) (0.88) (1.5) (6.71) (3.2) (3.52) 
0.28 -0.88 -1.16 6.71 3.2 -3.52 

0 -1.1 1 -1.1 1 NA NA NA 
( 1.2) (1.2) 

0.34 -1.11 -1.46 
(0.57) (1.2) ( 1.46) No gaps 

0 0.08 0.08 NA NA NA 
(1.3) (1.3) 

0.48 0.08 -0.41 0.71 0 -0.71 
(0.87) (1.3) (0.98) (0.71) (0.71) 

a. Mean differences, as well as mean absolute differences, are reported to indicate whether the differences were always one-way. 
b. NA indicates that the data method did not affect that layer. 



The modeling techniques produced very different maps with the krigitig and universal kriging 
results being preferred over inverse distance weighting in general because reliable estimates of variance 
are available. The inverse distance-weighting surface was sometimes similar to the kriging estimates, but 
most of the time had small patches of small or large values surrounding observations. The results of the 
cross-validation exercise revealed that some layers were more difficult to predict in general, and some 
sites were difficult to predict in some or all layers. The interbed soil thickness layers had large errors as a 
percent of the truth (see Table 5). This resulted in part from the smaller range of values for thickness. An 
error of a few feet was larger relative to a thickness of 3 to 6 m (1 0 to 20 ft) than for an elevation of 
1,524 m (5,000 ft). Four layers had extreme RedRootMSE values: A basalt, ,4-B interbed soil, 
B-C interbed soil, and C basalt. These were not caused by exceptionally large errors, but because of small 
kriging variances (see Appendix B, Figure B-2). The sites that were difficult to predict in many of the 
layers were NA89-2,O-7, and M14S. Two of the sites, NA89-2 and M14S, were isolated sites near the 
border of the prediction grid; therefore, these large deviations were expected. Site 0-7 was interior but far 
away from its neighbors (compared to other interior sites). Therefore, larger deviations were expected in 
this area as well. 

The kriging standard deviations have similar patterns for many layers as a result of similar 
variogram range and sill (see Appendix B, Figure B-2). Layers with smaller variogram range generally 
have a smaller difference between the nugget (Le., variability among close sites) and sill (i.e., variability 
among independent sites); therefore, these layers have more constant-looking kriging standard deviation 
maps (e.g., subsurface, A-B, and C-D interbed soil thickness). Layers with a larger variogram range 
generally have a larger range of kriging variance caused by the large difference between nugget and sill, 
and this results in standard deviation maps with more contours (e.g., surface and basalt elevations and 
B-C interbed soil thickness). Kriging standard deviations are smaller in areas with many sample sites and 
larger away from the central area where sampling becomes sparser. Grid Refinement 3 also displays small 
standard deviation areas around clumps of sample sites. 

Table 5. Cross-validation statistics for lithology data.a 
Error as Percent 

Mean Error of Truth (Median) Mean Squarl3 Error RedRootMSE 
Laver Grid 0 Grid 3 Grid 0 Grid 3 Grid 0 Grid 3 Grid 0 Grid 3 

Surface 
elevation 
Surficial 
soil thickness 
A basalt 
elevation 
A-B interbed 
soil thickness 
B basalt 
elevation 
B-C interbed 
soil thickness 
C basalt 
elevation 
C-D interbed 
soil thickness 

-0.14 0.04 

0.25 -0.28 

-0.69 ' -0.76 

-0.01 0.24 

-0.06 -0.34 

-0.35 -0.27 

-0.35 -0.46 

-0.27 -0.10 

0 

5 

0 

-29 

0 

-5 

0 

-10 

0 

-10 

0 

-2 

0 

-5 

0 

-10 

18 

21 

50 

10 

33 

78 

79 

4 

4 

23 

46 

5 

12 

81 

12 

112 

1.2 

0.9 

2.0 

2.1 

1.4 

4.8 

2.3 

1 .o 

1.1 

1 .o 

2.2 

1.5 

1.2 

6.3 

1.7 

1.2 

a. Cross validation was done for predictions made for the base grid (only for sites within the base grid) and Grid 3 (only for 
sites inside Grid 3). Values of RedRootMSE in bold font exceed the limit given in the text. 
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5.2 Hydraulic Characteristics Data Set 

The porosity data were related to easting, northing, and easting x northing in the B-C interbed layer 
and only easting in the C-D interbed layer (see Table 2). The residuals of these regressions showed no 
signs of anisotropy. The variograms were modeled at a maximum distance of 762 and 914 m (2,500 and 
3,000 ft) for B-C and C-D interbed layers, respectively. The classical estimator was used and a lag of 
91 and 61 m (300 and 200 ft) was specified for B-C and C-D, respectively. Site 14-S was influential in 
variogram modeling for the B-C interbed. It was located within the SDA, but was on the outer edge of the 
convex data hull. A measurement was taken at only one depth at this site, which had the largest mean 
porosity of any site in the B-C interbed. Those sites near 14-S had porosity values approximately 30% less 
than the reported 47.5 %. Without this site, the variogram was fit with a spherical model with no nugget, a 
sill of 5.6 m2 (60 ft’), and a range of 305 m (1,000 ft) (see Table 3 and Appendix B, Figure B-1 [i]). The 
C-D layer contained no suspect values and was modeled by a spherical model with no nugget, a sill of 
2.8 m2 (30 ft’), and a range of 305 m (1,000 ft) (see Table 3 and Appendix B, Figure B-l[k]). 

The variograms for porosity showed the smallest distances at about 152 m (500 ft) and a definite 
increase came from that area, but the data did not extend to the origin for modeling. Therefore, an 
assumption was made about the small-scale spatial variability in the data. It was assumed that the data 
should be modeled with a spherical variogram, which is more conservative than the Gaussian model, 
because the spatial correlation was assumed to decrease more rapidly as the distance increased. 

The cross-validation statistics for porosity indicated a good fit for both layers (see Table 6). The 
mean error, error as percent of truth, and MSE are similar for the base grid and Grid 3, and also between 
the layers. The reduced root MSE values, though similar for the two grids, were dissimilar between the 
layers. The B-C layer had a reduced root MSE that was above the limit and more than twice for the value 
from the C-D layer. This resulted from the lower number of sites in the B-C layer (17 versus 24 in the 
C-D layer) and from the higher variability in the B-C layer (B-C sill = 5.6 m2 [60 ft2] and 
C-D sill = 2.8 m2 [30 ft’]) (see Appendix B, Figure B-1 [i, k] and Table 3). The kriging standard deviation 
maps (see Appendix B, Figure B-2) display an increasing magnitude at an increasing distance from the 
cluster of sample sites. 

The permeability data followed a lognormal distribution; therefore, a natural log transformation was 
necessary for kriging. Kriging methods were somewhat robust to nonnormality, but not to nonsymmetry. 
The permeability data were related to neither northing nor easting for the B-C interbed, but were related 
to northing and northing2 for the C-D interbed (see Table 2). The variograms were difficult to model 
because of a lack of site locations at small distances (see Appendix B, Figure B-1 [l, m]). The small-scale 
spatial variation was assumed instead of modeled. To interpret the kriging predictions, the values were 
back-transformed, including the bias correction. The kriging variance was quite large because of the small 
number of close stations. Therefore, the back-transformed data were large and out of the range of the data 
values themselves. Kriging was an inappropriate method for these data. Two alternative models for 
permeability were investigated. A normal-score transformation resulted in similarly unreasonable 
predictions because the variogram was pure nugget with no visible range. The inverse distance-weighting 
method predictions were reasonable (see Appendix B, Figure B-3) relative to the range of values 
observed. 

The cross-validation statistics provided conflicting results (see Table 6). Those measures that were 
not variance adjusted @e., mean error, error as percent of truth, and MSE) were extremely large. Though 
the variance adjusted RedRootMSE was larger than the given limit for the C-D layer, it was not as 
extreme as the other measures. 

Because the standard deviation for inverse distance weighting uses the same weights as the 
predictions, the patterns are similar (see Appendix B, Figure B-2). The standard deviation is smaller in 
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Table 6. Cross validation statistics for hvdraulic characteristiwa 

Error as Percent 

Variable Layer GridO Grid 3 GridO Grid 3 GridO Grid3 GridO Grid 3 

Mean Error of Truth Mean Square Error RedRootM SE 

Porosity B-C -0.43 -0.43 3 3 122 122 2.2 2.2 

C-D 0.47 -0.13 1 1 40 40 1 1 

Permeability B-C -41 NA 1,079 NA 2,507,802 NA 1.6 NA 

C-D 62 NA 84 1 NA 2,685,023 NA 2.6 NA 
a. Porosity was modeled using universal kriging and permeability was modeled using inverse distance weighting. The inverse 
distance weighting was done without respect to grid; therefore, general statistics are listed under Grid 0. Values of 
RedRootMSE in bold font exceed the limit given in the text. 
NA = not applicable 

areas of dense sampling, but these clusters are less defined for the inverse distance weighting than for 
kriging. This results from the distance variance relationship, which in general is steeper for inverse 
distance weighting, causing the variance to be influenced by close sites and giving all sites past a specific 
distance approximately equal weight. The variogram relationship generally has a larger range of influence 
and the weights drop off more slowly as distance increases. 

5.3 Aquifer Transmissivity Data Set 

Aquifer transmissivity, log transformed, was significantly related to easting and northing (see 
Table 2). The directional variograms of the raw data and the residuals were similar, indicating isotropic 
data. 

With limited short-range data, the variogram cloud was used to verify the chosen variogram model 
(see Table 3 and Appendix B, Figure B-l[m]). Because the small-scale results were similar for the cloud 
and the model, moderate confidence was placed in the model. The universal kriging predictions were 
compared to inverse distance weighting to determine the utility of the variogram model. The inverse 
distance weighting results were not realistic. The majority of the area was predicted to be very high with 
small pockets of small values around observations. 

The back-transformation for aquifer transmissivity, which was lognormal, was successfully applied 
here compared to the unsuccessful attempt for interbed soil permeability. The spatial continuity was 
greater than the interbed soil permeability. The range was estimated at 549 m (1,800 ft) for the aquifer 
transmissivity but 305 m (1,000 ft) for the soil permeability. Therefore, even though relatively few 
samples were taken at close distances, those that were taken fully support the assumed model. The stable 
variogram also explains the moderate-sized kriging variance, hence the utility of the back-transformation 
for these data. 

The cross-validation statistics also indicated a good fitting model (see Table 7). The unadjusted 
error measurements were small and the reduced root MSE was within the limits for the sample size. The 
kriging standard deviation pattern followed that of the kriging predictions because of the small number of 
observations (n = 21) (see Appendix B, Figure B-2). 

Table 7. Cross validation statistics for aauifer Dermeabilitv based on loa-transformed data. 
Error as Percent 

Mean Error of Truth Mean Square Error RedRootMSE 
Grid 0 Grid 3 Grid 0 Grid 3 Grid 0 Grid 3 Grid 0 Grid 3 
0.1 1 0.1 1 1 1 4 4 0.75 0.75 
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6. DISCUSSION 

The models provide predictions over the area of interest at the density needed for inclusion in a 
hydrologic model and do so with reasonable precision. The prediction maps (see Appendix B, Figure B-3) 
reveal some interesting relationships. Many of the lithology layers show similarities in shape of contours, 
though not actual values. The bottom elevation of the interbed soil layer has roughly the same shape as 
the bottom elevation of the basalt layer above it (or surface layer for the surficial soils). This relationship 
breaks down somewhat at increasing depth and for increasing grid density. For example, the C-D interbed 
soil layer only looks similar to the C basalt layer for the base grid, but not for the other grids. The B-C 
interbed soil layer looks similar to the B basalt layer for all but the most intense grid (Grid 3). A general 
similarity of shape also is shown for the surface elevation down to the B basilk layer for all grids. The 
prediction contours for soil permeability also are similar between the B-C and C-D interbed soil layers for 
all grids. The prediction contours for porosity of those soil layers show increasing differences as the grid 
intensity increases. 

6.1 Precision of the Predictions and Fit sf the Model 

The kriging standard deviations indicate that the precision of the predictions is good overall, given 
the small number of sample site locations (see Table 8 and Appendix B, Figure B-2). The standard errors 
need to be taken into account when using the predictions. Predicting with hydrologic models using these 
predictions should take into account the variability in these predictions as wedl as the variability in the 
future model. For predictions that have a large coefficient of variation (Le., C Y  = standard deviation 
divided by the mean), the end predictions may not be deemed useful because of their combined model 
variance. The modeling standard deviations are given in Table 8, in addition to the CVs. A CV greater 
than 10% is often considered large. None of the lithology predictions has a large CV. The CVs based on 
elevation appear to be small, but the predictions used for mapping and in other models are in elevation; 
therefore, they are appropriate. The other variables have larger CVs. This results from the small number 
of site locations in these data sets. The location of future modeling also is a factor. The prediction 
standard deviation is smaller in areas of dense sampling; therefore, future modeling also will be more 
precise in these areas. 

Table 8. Modeling standard error for Grid Refinement 2." 
Mean 

Minimum Maximum Mean Coefficient of 
Standard Standard Standard Variation 

Data Set Variable Error Error Error (%I 
Lithology Surface elevation 0.7 5.1 3.2 0.06 

Surficial soil thickness 3.0 7.1 6.2 0.12 
A basalt elevation 1.7 12.6 7.0 0.14 
A-B interbed soil 1.2 2.3 1.9 0.04 
thickness 
B basalt elevation 2.5 5.1 3.5 0.07 
B-C interbed soil thickness 1.1 8.5 4.6 0.09 
C basalt elevation 0.8 6.0 3.4 0.07 
C-D interbed soil 7.2 9.6 9.0 0.19 
thickness 

lnterbed B-C interbed porosity 2.5 9.0 7.1 22.0 
hydraulic 
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Table 8. (continued). 
Mean 

Minimum Maximum Mean Coefficient of 
Standard Standard Standard Variation 

Data Set Var i ab 1 e Error Error Error ("/.I 
C-D interbed porosity 1.6 6.1 4.8 11.0 

C-D interbed permeability 4.6 1,023 138 21.0 
B-C interbed permeability 4.3 1,342 296 25.0 

Aquifer Transmissivity 0.3 889,982 24,885 48.0 
permeability 

a. The coefficient of variation (i.e., CV = standard error [standard deviation of the prediction] divided by the prediction) for lithology data is 
based on values converted to elevations because the small thickness values bias the results. 

6.2 Cross Validation 

Another indication of the fit of these models is the cross validation, which gives different results 
for different variables. Five of the eight lithology layers have large cross-val.,dation statistics (see 
Table 5 ) .  These five lithology layers are listed below: 

A basalt 

A-B interbed soil 

B basalt 

B-C interbed soil 

C basalt. 

These large cross-validation statistics are generally caused by a few sites that have large influences 
because of their locations. Sites that are far away from other sites are very influential in the predictive 
surface because, if their value is different from the closest sites (even if they are far away), then the cross- 
validation error will be large. The large cross-validation errors for soil porosity in the B-C interbed soil 
and permeability in the C-D interbed result from the small sample size, as well as the site locations (see 
Table 6) .  

6.3 Sparseness of Data 

Problems in modeling these data include sparseness as well as large distances between many of the 
sites. These problems affected all modeling techniques; however, it mostly aFfected kriging where sparse 
data could not be used to reliably estimate the semivariance at small distances. The variogram model is 
most dependent on the fitting at small distances because that is where the differences occur relative to 
model shape and nugget. Beyond the range, the variogram is of little interest Therefore, the pairs of 
points within the small distances are important. The variogram model parameters are used to predict 
values at unsampled locations as well as to estimate the variance of the predictions; therefore, these also 
are most affected by the variogram model at small ranges. Because the weights in the kriging equations 
change (sometimes drastically) from close distances to the range, these values can greatly affect the 
predictions. The predictions also will vary depending on the form of the model at small distances. For 
instance, the Gaussian and spherical models have different shapes at small distances. The Gaussian model 
starts horizontally and then slopes upward, producing a surface that is quite smooth because close sites 
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are predicted to be similar. The spherical model starts with an upward slope, producing a surface that is 
rougher because close sites can be predicted to show more difference. Because of these reasons, it is 
essential that sites in the area of interest be close together. Sparse sites will produce predictions that may 
be biased because of inaccurate variogram modeling as well as predictions that have large variances; 
therefore, little confidence is placed in those values. 

6.4 Improvements to Predictions 

Improvements can be made to these predictions without collecting hrther information by (1) using 
simulation rather than model prediction and by (2) using covariates to improve prediction. Simulation 
methods result in a distribution of predictions for each grid location instead of a single number. 
Simulation results provide a broader picture because many of the predictions are realized. Simulation also 
may provide a way to simultaneously predict values for the various lithology layers, which could improve 
overall prediction. Implementing simulation methods is more time and computer intensive than kriging 
models and has not been explored with these data. 

The second improvement to predictions may come in the form of using related variables. Cokriging 
(i.e., kriging plus a covariate) is one approach to incorporate more information. In order for the covariate 
to be usehl, it should be related to the variable of interest and should be measured at more locations than 
the variable of interest. Covariates that do not meet these criteria could unduly increase the kriging 
variance without changing the predictions significantly. Simply using upper layers in the lithology data 
for cokriging might not be very usehl because there are no extra sites. Another weakness in using the 
lithology data as covariates is that cokriging makes an additional assumption of a linear model of 
coregionalization. This assumption is generally satisfied by having variables and covariates that have 
similar structure (i.e., model shape) and spatial range. This is not the case for the lithology data. However, 
new approaches could be explored for dealing with this. Another approach would be to predict layers one 
at a time and use the predictions for the next lower layer. This could start by using a virtually continuous 
surface elevation map to help predict surficial soil depth. 
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